Mycielski approach for wind speed prediction
نویسندگان
چکیده
Wind speed modeling and prediction plays a critical role in wind related engineering studies. However, since the data have random behavior, it is difficult to apply statistical approaches with apriori and deterministic parameters. On the other hand, wind speed data have an important feature; extreme transitions from a wind state to a far different one are rare. Therefore, behavioral modeling is possible. Although several studies focus on global parametrization of wind data behavior, the literature in time-wise modeling and prediction is relatively small. In this study, a novel approach for wind speed modeling using the Mycielski algorithm is demonstrated. The algorithm accurately predicts the time variations of wind speed data in the sense of forecasting future values of wind data by analyzing the repeatedness in the history of the data. The prediction precision of the procedure is tested using wind speed data obtained from three different locations of Turkey (Kayseri, _ Izmir and Antalya). Prediction results with high accuracy are obtained and presented. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Short-term wind speed estimation based on weather data
For accurate and efficient use of wind power, it is important to know the statistical characteristics, availability, diurnal variation, and prediction of wind speed. Prediction of wind power permits the scheduling of the connection or the disconnection of wind turbines to achieve optimal operating costs. In this paper, a simple and accurate method for predicting wind speed based on weather-sens...
متن کاملEvaluation of Optimal Fuzzy Membership Function for Wind Speed Forecasting
In this paper, a new approach is proposed in order to select an optimal membership function for inputs of wind speed prediction system. Then using a fuzzy method and the stochastic characteristics of wind speed in the previous year, the wind speed modeling is performed and the wind speed for the future year will be predicted. In this proposed method, the average and the standard deviation of in...
متن کاملپیشگویی گامـ بلند سرعت باد مبتنی بر مدل ترکیبی RNNGA
For proper and efficient utilization of wind power, the prediction of wind speed is very important. Wind is one of the main sources of energy in the world, but the wind turbines have a lack of reliability, continuity and homogeneity in power production. On the other hand, sudden changes of wind speed, lead to risk for wind turbine units health. Therefore, the prediction of wind speed for turbin...
متن کاملSimulation and Prediction of Wind Speeds: A Neural Network for Weibull
Abstract. Wind as a resource of renewable energy has obtained an important share of the energy market already. Therefore simulation and prediction of wind speeds is essential for both, for engineers and energy traders. In this paper we analyze the surface wind speed data from three prototypic locations: coastal region (Rotterdam), undulating forest landscape few 100 m above sea level(Kassel), ...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کامل